Skip to main content

Prove the Magic of Morley's Trisector Theorem

 Here's a challenge for the brave geometers out there:

Geometrical Representation


  • Take any triangle (doesn't matter how weird its shape is). 
  • Trisect all three angles.
  • Extends these Trisectors and find where they meet nside the triange.

The Claim: 

The points where these trisectors meet will form a perfect equilateral triangle. Yes, always.

Your Task:

Prove what this magical equilateral triangle always appears. Use any tools or methods you like - geometry, algebra, or even black magic (if that helps). But remember, just saying "It works" doesn't count as proof!
 
Bonus Question: Why do we even bother proving things that fee like geometry is showing off?

Enigma Zone

Proof

Let $PQR$ be an equilateral triangle. Denote the angle $PQR$ by $pQr$, etc. Choose $L$ outside the triangle $PQR$ such that $$lQr = lRq = \beta + \gamma$$ Clearly $LP$ bisects $qLr$. $M$ and $N$ are similarly defined. Let $LQ$ meet $MP$ in $C$. Then, $$qCp = lQp + mPq - \pi = \alpha + \beta + 2\gamma - \frac{\pi}{3} = \gamma$$ Since $\alpha + \beta + \gamma = \frac{\pi}{3}$ Choose $B$ on $LR$ so that $CP$ bisects $qCb$, $P$ is the in-centre of triangle $LCB$ and so, $$pBr = pBc = \frac{1}{2}(\pi - rLq - lCb) = \beta$$ Giving $bPr + rPn = \pi$. Hence $B$ is the intersection of $LR$ and $NP$. Similarly, if $A$ is the intersection of $MR$ and $NQ$, we have, $$qCa = \gamma; \ qAr = qAc = \alpha$$ $$\text{also,} \ rBa = \beta; \ rAb = \alpha$$ And so $ABC$ is the required triangle, and the theorem is proved.

Reference: Roger Penrose, Collected Works, Volume-1.

Comments

Popular

The 20th Perfect Number: Digits and a few Divisors

 40767271711094423266286789500920409509472451956754173657558947684464681715260993357605734441071512726995067528227747339481802307406017975918463751821848507118336173625166416441051751909733833921511752076653991689253045435925355114303300112240094312492366309429025181937703076074631694330891971804062290637324463063370007444165676699382865548574698013900725344417715580901794517787294713626725247616431165717354475083506329812661542345174259067891050196093969424325393268526237129649381671501429508518532700654319135658688537822432173525578067619513381189044904675194018182193349875318307576479629202619084300084497552929130566459016664436323063518973396208264181441158994259766077215199598273505770807393645474832736784296681037040447804670653738245607704296033370069548245058222346937754342008266115596746009270472531585662215058309416971412450120373149200391305139626391147758497714062124945414219545021663761325651848979096956363445054874071200187004098334242171313866643279783121709224161095...